skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Patton-Vogt, Jana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Stukenbrock, Eva H (Ed.)
    Phosphorus is essential in all cells’ structural, metabolic and regulatory functions. For fungal cells that import inorganic phosphate (Pi) up a steep concentration gradient, surface Pi transporters are critical capacitators of growth. Fungi must deploy Pi transporters that enable optimal Pi uptake in pH and Pi concentration ranges prevalent in their environments. Single, triple and quadruple mutants were used to characterize the four Pi transporters we identified for the human fungal pathogenCandida albicans, which must adapt to alkaline conditions during invasion of the host bloodstream and deep organs. A high-affinity Pi transporter, Pho84, was most efficient across the widest pH range while another, Pho89, showed high-affinity characteristics only within one pH unit of neutral. Two low-affinity Pi transporters, Pho87 and Fgr2, were active only in acidic conditions. Only Pho84 among the Pi transporters was clearly required in previously identified Pi-related functions including Target of Rapamycin Complex 1 signaling, oxidative stress resistance and hyphal growth. We used in vitro evolution and whole genome sequencing as an unbiased forward genetic approach to probe adaptation to prolonged Pi scarcity of two quadruple mutant lineages lacking all 4 Pi transporters. Lineage-specific genomic changes corresponded to divergent success of the two lineages in fitness recovery during Pi limitation. Initial, large-scale genomic alterations like aneuploidies and loss of heterozygosity eventually resolved, as populations gained small-scale mutations. Severity of some phenotypes linked to Pi starvation, like cell wall stress hypersensitivity, decreased in parallel to evolving populations’ fitness recovery in Pi scarcity, while severity of others like membrane stress responses diverged from Pi scarcity fitness. Among preliminary candidate genes for contributors to fitness recovery, those with links to TORC1 were overrepresented. Since Pi homeostasis differs substantially between fungi and humans, adaptive processes to Pi deprivation may harbor small-molecule targets that impact fungal growth, stress resistance and virulence. 
    more » « less
  2. Lorenz, Michael (Ed.)
    ABSTRACT The fungal pathogenCandida albicansmust acquire phosphate to colonize, infect, and proliferate in the human host.C. albicanshas four inorganic phosphate (Pi) transporters, Pho84 being the major high-affinity transporter; its cells can also use glycerophosphocholine (GPC) as their sole phosphate source. GPC is a lipid metabolite derived from deacylation of the lipid phosphatidylcholine. GPC is found in multiple human tissues, including the renal medulla, where it acts as an osmolyte.C. albicansimports GPC into the cell via the Git3 and Git4 transporters. Internalized GPC can be hydrolyzed to release Pi. To determine if GPC import and subsequent metabolism affect phosphate homeostasis upon Pilimitation, we monitored growth and phenotypic outputs in cells provided with either Pior GPC. Inpho84∆/∆ mutant cells that exhibit phenotypes associated with Pilimitation, GPC provision rescued sensitivity to osmotic and cell wall stresses. The glycerophosphodiesterase Gde1 was required for phenotypic rescue of osmotic stress by GPC provision. GPC provision, like Piprovision, resulted in repression of the PHO regulon and activation of TORC1 signaling. Piuptake was similar to GPC uptake when phosphate availability was low (200 µM). While available at lower concentrations than Piin the human host, GPC is an advantageous Pisource for the fungus because it simultaneously serves as a choline source. In summary, we find GPC is capable of substituting for PiinC. albicansby many though not all criteria and may contribute to phosphate availability for the fungus in the human host. IMPORTANCECandida albicansis the most commonly isolated species from patients suffering from invasive fungal disease.C. albicansis most commonly a commensal organism colonizing a variety of niches in the human host. The fungus must compete for resources with the host flora to acquire essential nutrients such as phosphate. Phosphate acquisition and homeostasis have been shown to play a key role inC. albicansvirulence, with several genes involved in these processes being required for normal virulence and several being upregulated during infection. In addition to inorganic phosphate (Pi),C. albicanscan utilize the lipid-derived metabolite glycerophosphocholine (GPC) as a phosphate source. As GPC is available within the human host, we examined the role of GPC in phosphate homeostasis inC. albicans. We find that GPC can substitute for Piby many though not all criteria and is likely a relevant physiological phosphate source forC. albicans. 
    more » « less